

Alanine aminotransferase (ALT/GPT) - Ultimate Single Reagent

REF.	Pack size
181 02 020	40 T
181 06 020	120 T

Intended Use

SDI ALT reagent is intended for the in-vitro quantitative, diagnostic determination of ALT in human serum on both automated and manual systems.

Background

The enzyme alanine aminotransferase ALT is widely distributed with high concentrations in the liver and to a lesser extent in kidneys heart, skeletal muscles, pancreas and lungs. Elevated serum ALT is found in hepatitis, cirrhosis, obstructive jaundice, carcinoma of the liver and chronic alcohol abuse. ALT is only slightly elevated in patients who have an uncomplicated myocardial infarction. Although both serum AST and ALT become elevated whenever disease processes affect liver cell integrity, ALT is the more liver specific enzyme. Moreover, elevations of ALT activity persist longer than elevations of AST activity.

Method

Kinetic method according to the International Federation of Clinical Chemistry (IFCC).

Assay Principle

The series of the reaction involved in the assay system is as follows:

1. The amino group is enzymatically transferred by ALT present in the sample from alanine to the carbon atom of 2-oxoglutarate yielding pyruvate and L-glutamate.

L-Alanine	ALT	Pyruvate
+		+
2-Oxoglutarate		L-Glutamate

Pyruvate is reduced to lactate by LDH present in the reagent with the simultaneous oxidation of NADH to nicotinamide adenine dinucleotide (NAD). The reaction is monitored by measuring the rate of decrease in absorbance at 340 nm due to the oxidation of NADH.

Pyruvate	LDH	L-Lactate
+		▶ +
NADH + H^+		NAD ⁺

3. Endogenous sample pyruvate is rapidly and completely reduced by LDH during the initial incubation period so that it does not interfere with the assay.

Sample pyruvate + NADH + H ⁺	L-Lactate + NAD ⁺	
Reagent (R)		
Tris buffer (pH 7.4) L- Alanine LDH Sodium Azide	100 800 ≥ 2000 8	mmol/L mmol/L U/L mmol/L

NADH 2 - Oxoglutarate

The reagent also contains additives required to maintain NADH in its reduced form.

≥ 0.18

18

mmol/L

mmol/L

For further information, refer to the Alanine aminotransferase reagent material safety data sheet.

Reagent Preparation, Storage and Stability

SDI ALT reagent is supplied ready-to-use and stable up to the expiry date labelled on the bottles.

Once opened, the reagent is stable for 1 month at the specified temperature.

Precautions and Warnings

Do not ingest or inhalate. In case of contact with eyes or skin; rinse immediately with plenty of soap and water. In case of severe injuries; seek medical advice immediately.

The reagent (R) contain sodium azide which may react with copper or lead plumbing.

Deterioration

Do not use SDI ALT reagent if it is turbid or if the absorbance of the working reagent is less than 0.9 at 340 nm. Failure to recover control values within the assigned range may be an indication of reagent deterioration

Specimen Collection and Preservation

Use nonhemolyzed serum or plasma. Heparin and EDTA are the only acceptable anticoagulants; avoid other anticoagulants. The biological half-life of ALT in serum is 47 hours. **Stability :** 3 days at 15 - 25 °C , 7 days at 4-8 °C or 12 weeks at -20 °C

System Parameters

Wavelength Optical path Assay type Direction Sample : Reagent Ratio e.g.: Reagent volume Sample volume Temperature Equilibration time Read time Zero adjustment Reagent Blank Limits Sensitivity Linearity	340 nm (334 – 365 nm) 1 cm Kinetic decrease 1 : 10 1 ml 100 μl 37 °C or 30 °C 60 seconds 180 seconds Against air Low 0.9 AU High 2.5 AU 5 U/L 400 U/L
Procedure	400 0/2

	Macro	Semi-Micro	
Reagent (R)	1.0 ml	500 μl	
Specimen	100 μl	50 μl	

Mix, read initial absorbance after 60 seconds and start timer simultaneously. Read again after 60, 120 and 180 seconds. Determine the mean absorbance change per minute ($\Delta A/min$).

Calculation

To calculate the ALT/GPT activity use the following formula

U/I = 1780	х	∆A 334	nm /mir
U/I = 1746	х	∆A 340	nm /mir
U/I = 3235	х	∆A 365	nm /mir

Quality Control

Normal and abnormal control serum of known concentrations should be analyzed with each run.

Performance Characterstics

Precision

Within run (Repeatability)		
	Level 1	Level 2
n	20	20
Mean (U/L)	24.6	105.9
SD	0.93	0.94
CV%	3.78	0.89

Run to run (Reproducibility)

	Level 1	Level 2
n	20	20
Mean (U/L)	25.2	106
SD	1.1	1.05
CV%	3.9	0.95

Methods Comparison

A comparison between ALT reagent and a commercial reagent of the same methodology was performed on 20 human sera. A correlation of 0.983 was obtained.

Sensitivity

When run as recommended, the minimum detection limit of this assay is 5.0 U/L. $\hfill \label{eq:limit}$

Linearity

The reaction is linear up to ALT concentration of 400 U/L; specimens showing higher concentration should be diluted 1+5 with physiological saline and repeat the assay (result×6).

Interfering Substances

Hemolysis

Erythrocyte contamination elevates results, since ALT activities in erythrocytes are 3 to 5 times higher than those in normal sera.

Icterus

No significant interference.

Lipemia

Lipemic specimens may cause high absorbance flagging. Diluted sample is recommended.

Anticoagulants Citrate and fluoride inhibit the enzyme activity.

Drugs

Calcium dobesilate and doxycycline HCL cause artificially low ALT values at the tested drug level.

Analytical Range

5-400 U/L.

Expe	cted value	es	
37 ⁰ C	Females	up to 31 U/I	(up to 0.52 μKat/L)
	males	up to 41 U/I	(up to 0.68 μKat/L)
30 ^o C	Females	up to 22 U/I	(up to 0.37 μKat/L)
	males	up to 29 U/I	(up to 0.48 μKat/L)

Temperature conversion factor is 1.32 (25 - 30 $^{\rm O}{\rm C})$ and 1.85 (25 - 37 $^{\rm O}{\rm C}$)

Waste Disposal

This product is made to be used in professional laboratories. Please consult local regulations for a correct waste disposal.

- S56: dispose of this material and its container at hazardous or special waste collection point. **S57:** use appropriate container to avoid environmental
- contamination S61: avoid release in environment. refer to special
- instructions/safety data sheets.

References

- Breuer J, report on the symposium "drug effects in clinical chemistry methods". Eur J Clin Chem Clin Biochem. 1996;34:385-386.
 ECCLS. Determination of the catalytic activity concentration in
- serum on L- alanine aminotransferase (EC 2.6.1.2,ALAT) Clin chem. 1989;20:204-211.
- 3. IFCC expert panel on enzymes part 3. J Clin Chem Clin Biochem 1986;24:481-95.
- 1986;24:481-95.
 Henry RJ, et al. Am J clin Path 1960 :34:381
 Sherwin JE. Liver function. In:kaplan LA, PESCE AJ, eds. Clinical chemistry, theory, analysis, and correlation. St louis:mosby;1984:420-438.
 Young DS. Effects of drugs on clinical laboratory tests. Third edition. 1990 :3:6-12.
 Zilva JF, pannall PR : plasma enzymes in diagnosis in clinical aboratoristic in diagnosis in clinical aboratoristic in diagnosis.
- chemistry in diagnosis and treatment lioydluke london 1979:chap 17:338

SYMBOLS IN PRODUCT LABELLING

IVD	For in-vitro diagnostic use Batch Code/Lot number
REF	Catalogue Number
i	Consult instructions for use
1	Temperature Limitation
23	Use by/Expiration Date

Use by/Expiration Date CAUTION. Consult instructions for use

∕!∖

Manufactured by

IFUFCC45

Rev.(1), 10/01/2021

Catalogue Number Consult instructions for use